Alton Coal Development, LLC. Summary of PM₁₀ Data Collected at Coal Hollow Mine, Utah During the Fourth Quarter, 2013 ## Submitted to: Utah Division of Environmental Quality Division of Air Quality 195 North 1950 West Salt Lake City, Utah Contact: Jon Black ## Prepared by: Alton Coal Development, LLC. 463 N 100W, Suite1 Cedar City, Utah 84721 Contact: Kirk Nicholes 435.867.5331 # **Contents** | 1.0 | Intro | Introduction2 | | | | |---|----------------|----------------------|--|------------------|--| | 2.0 | Site Location2 | | | | | | 3.0 | AIR | QUALI | TY DATA SUMMARIES | 4 | | | 4.0 DATA RECOVERY AND QUALITY ASSURANCE | | | | | | | | 4.1 | | ecovery | | | | | 4.2 | Quality | Assurance | 7 | | | | | 4.2.1 | Precision of PM ₁₀ Measurements | | | | | | 4.2.2 | Audit Results | | | | | | 4.2.3 | Zero and Single Point Flow Rate Checks | | | | | | | List of Tables | | | | Table | I - Su | mmary o | of Measured PM ₁₀ Concentrations (μg/m ³) | 5 | | | | | | of Measured PM ₁₀ Concentrations (µg/m ³) | | | | | | | y of Measured PM ₁₀ Concentrations (µg/m ³) | | | | Table | IV – I | Mean Q | uarterly and Monthly Wind Speed | 6 | | | | | | of Data Recovery | | | | Table | VI - A | Audit Su | mmary | 8 | | | | | | List of Figures | | | | Figur | e 1 - S | ite Loca | tion Map | 3 | | | Figur | e 2 - S | atellite \ | View of Monitoring Locations | 4 | | | | | | List of Appendices | | | | APPE | ENDIX | A | | | | | Wind | rose | | | | | | APPE | ENDIX | В | | | | | Listin | g of P | M ₁₀ Cor | ncentrations (Data sheets for monitor's on DVD) | | | | APPE | ENDIX | C | | | | | Precis | sion an | nd Single | e-Point Flow Rate Checks | | | | APPE | ENDIX | I D | | | | | Field | Data S | Sheets | | | | | APPE | ENDIX | Ε | | | | | Indep | endent | t PM ₁₀ S | ampler Performance Audit Report | | | | Alton | Coal De | velopmen | nt, Inc | January 30, 2014 | | | $PM_{10}I$ | Data, 4th | n Quarter, | 2013 | Page 1 | | ### 1.0 INTRODUCTION This report summarizes measurements of Particulate Matter less than 10 microns nominal aerodynamic diameter (PM_{10}) collected and processed by Alton Coal Development, LLC, (ACD) from the three monitoring stations located at the Coal Hollow Mine Facility in Alton, Utah. Monitoring for PM_{10} is a condition of the mines operating permit. PM₁₀ monitoring at the site consists of three BGI PQ200 PM₁₀ monitors run by solar power. Figure 2 of this report shows the approximate locations of the monitoring locations. The BGI PQ200 monitors are EPA Reference Method monitors and are operated on the National Particulate 1-in-6 Monitoring Schedule. The data summarized herein covers the data collected during the fourth quarter of 2013. #### 2.0 SITE LOCATION The Coal Hollow Mine is located in Kane County, Utah, approximately three miles southeast of the town of Alton, Utah. Figure I on the following page gives an overview of the site location. Specifically the Coal Hollow Mine is located in Sections 19, 20, 29, and 30 of Township 39S, Range 5W; with an approximate facility location of: Northing: 41401699 meters Easting: 371534 meters Universal Transverse Mercator (UTM) Datum NAD27, Zone 12 The two monitoring locations as depicted in Figure 2, are located in positions to collect both background and maximum PM10 concentrations. The background monitor has a manufactures serial #962, therefore this monitor will be referred as monitor 962A. The compliance monitor has a manufactures serial #963, therefore this monitor will be referred as monitor 963B. The co-located monitor has a manufactures serial #964, therefore this monitor will be referred as monitor 964C. The compliance monitor and the co-located monitor coordinates are 37° 24' 5.04" North Latitude, 112° 27' 20.91" West Longitude, WGS84 Datum. The background monitor coordinates are 37° 24' 21.96" North Latitude, 112° 25' 59.97" West Longitude, WGS84 Datum. Figure 1 - Site Location Map Coolground Pari Vision of Visio Figure 2 - Satellite View of Monitoring Locations ### 3.0 AIR QUALITY DATA SUMMARIES A listing of the measured PM₁₀ concentrations for the quarter are presented in Appendix B (individual data sheets are provided on the enclosed disk in the PDF version of Appendix B) and Field Data Sheets generated during the collection of each sample are presented in Appendix D. Measurements were collected during a 24-hour periods and represent the average PM₁₀ concentration during the midnight to midnight data collection cycle. As required by the operating permit, duplicate measurements were made with Sampler #963B (designated as a compliance monitor) and Sampler #964C (designated as a co-located sampler) to the extent possible. The #964C monitor continues to have problems, ACD is in contact working with the manufacture (BGI) to diagnose and resolve issues with this monitor. Once the #964C monitor fails again, the monitor will be returned to the manufacture with the error codes generated during the failed run and necessary repairs made. The quarterly mean PM₁₀ concentration and the comparison of measured concentrations to standards are based on measurements from the primary Sampler #963B. If a measurement from Sampler #963B was missing or invalid, the measurement from the secondary Sampler #964C would be used. The highest 24-hour mean PM_{10} concentrations measured during the quarter from the two monitoring locations are summarized in Table I, Table II, and Table III. The three highest Alton Coal Development, Inc PM_{10} Data, 4th Quarter, 2013 Page 4 concentrations, # of valid samples, and the arithmetic mean concentrations from each of the sites are listed. All measured PM_{10} concentrations were below the 24-hour National Ambient Air Quality Standard (NAAQS) of 150 $\mu g/m^3$. Table I - Summary of Measured PM₁₀ Concentrations (μg/m³) Background Monitor - 962A | RANK | DATE | PM ₁₀ CONCENTRATION | | |-------------------------|--|--------------------------------|--| | Highest | 11/18/2013 | 7.8 | | | 2 nd Highest | 10/07/2013 | 6.8 | | | Monthly Mean | 10/1/13-10/31/13 | 5.8 | | | Monthly Mean | 11/1/13-11/30/13 | 3.1 | | | Monthly Mean | 12/1/13-12/31/13 | 2.1 | | | Quarterly Mean | 10/1/13-12/31/13
(16 valid samples) | 3.8 | | Table II - Summary of Measured PM_{10} Concentrations ($\mu g/m^3$) Compliance Monitor - 963B | RANK | DATE | PM ₁₀ CONCENTRATION | | |-------------------------|--|--------------------------------|--| | Highest | 10/01/2013 | 68.2 | | | 2 nd Highest | 11/12/2013 | 44.1 | | | Monthly Mean | 10/1/13-10/31/13 | 29.4 | | | Monthly Mean | 11/1/13-11/30/13 | 20.9 | | | Monthly Mean | 12/1/13-12/31/13 | 29.2 | | | Quarterly Mean | 10/1/13-12/31/13
(16 valid samples) | 26.7 | | Table III - Summary of Measured PM_{10} Concentrations ($\mu g/m^3$) Compliance Monitor - 964C | RANK | DATE | PM ₁₀ CONCENTRATION | |-------------------------|---------------------------------------|--------------------------------| | Highest | 11/12/2013 | 49.9 | | 2 nd Highest | 11/18/2013 | 43.2 | | Monthly Mean | 10/1/13-10/31/13 | 14.8 | | Monthly Mean | 11/1/13-11/30/13 | 24.3 | | Monthly Mean | 12/1/13-12/31/13 | 14.7 | | Quarterly Mean | 10/1/13-12/31/13
(8 valid samples) | 19.0 | Table IV - Mean Quarterly and Monthly Wind Speed | | 4th Quarter
2013 | October | November | December | |--------------------------|---------------------|---------|----------|----------| | Mean
Wind Speed (m/s) | 2.05* | 2.58 | 0.98* | 2.56 | ^{*}Wind sensor failed affecting mean wind Speed for November and for the quarter. ## 4.0 DATA RECOVERY AND QUALITY ASSURANCE ## 4.1 Data Recovery ## Monitor 962A Monitor 962A collected 16 of the 16 samples during the quarter. The percent recovery for this quarter is 100%. ### Monitor 963B Monitor 963B collected 16 of the 16 samples during the quarter. The percent recovery for this quarter is 100%. ### Monitor 964C Monitor 964C collected 9 of the 16 samples during the quarter. The percent recovery for this quarter is 56%. For the sample dates of Oct. 1st and 7th the monitor was disabled while the mother board was sent out for repairs. For the sample dates of Oct 19th, Nov. 6th, Dec. 6th, Dec. 12th and Dec. 24th data was not collected due to the monitor malfunctioning; run time was approximately 3 minutes to 17:55 hrs before the machine malfunctioned. The PM₁₀ data recoveries for the three monitoring stations are presented below: **POSSIBLE** PERCENT DATA **SAMPLER** VALID SAMPLES **SAMPLES** RECOVERY 16 962A 16 100% 963B 16 16 100% 964C 9 56% 16 Table V - Summary of Data Recovery ## 4.2 Quality Assurance Quality assurance procedures utilized to verify the integrity of the measured PM_{10} data included the following: - 1. Review of PM₁₀ precision measurements based upon duplicate, collocated measurements. - 2. Independent quarterly audits of the PM_{10} samplers. - 3. Monthly zero and single point flow rate checks of the PM_{10} samplers. ## 4.2.1 Precision of PM₁₀ Measurements The precision of the PM_{10} measurements was determined from the duplicate samples collected from the collocated BGI PQ200 Monitors 963B and 964C. As recommended in 40 CFR, Part 58, Appendix A, Section 5.3.1, PM_{10} precision checks are reported for instances when the concentrations for duplicate samples both exceed 3 $\mu g/m^3$. Duplicate samples that did not meet this condition were omitted for the purposes of the precision checks. Appendix C, of this report summarizes precision calculations between the compliance monitor and the co-located monitor. Monthly flow rate verification data is also summarized in Appendix C. Precision calculations were developed based on 6 valid pairs of co-located monitoring data during the quarter. Single point precision based on 40 CFR, Part 58, Appendix A Equation 10 ranged from -13.1% to 34.3%. The aggregate coefficient of variability (CV) calculated in accordance with 40 CFR, Part 58, Appendix A Equation 11 is 27.4%. This value is above the 10% goal for aggregate CV. The value for the quarter CV was significantly impacted by the absence of data from the 964C monitor during malfunctions reducing the number of pairs for comparison. Four of the six values exceeded the 10%. ACD will continue to investigate other causes that may have an effect on the correlation of precision calculations. #### 4.2.2 Audit Results The accuracy of the PM_{10} sampler flows was verified by a performance audit conducted by Air Resource Specialist on October 30, 2013. A copy of the audit report is presented in Appendix E and is summarized in Table VI. The audit results indicate that the two samplers were operating properly, the collocated monitor was out for repairs. | Table VI - Audit Summary | | | | | |--------------------------|--------------------|--------|---------------------------|--------| | SAMPLER | AUDIT % DIFFERENCE | LIMIT* | DESIGN
%
DIFFERENCE | LIMIT* | | 962A | -5.1 | ±4% | 5.4 | ± 5% | | 963B | -1.2 | ±4% | 1.2 | ± 5% | | 964C | 1.5 | ±4% | -1.4 | ± 5% | Table VI - Audit Summary ## 4.2.3 Zero and Single Point Flow Rate Checks Zero and single-point flow rate verifications are performed by a site technician on a monthly basis. The data was then input into a statistical calculator to calculate percent difference and bias between each of the monitors and the monthly single point flow rate measured by a NIST traceable calibration orifice. The calculator used is called the "Data Assessment Statistical Calculator" DASC Tool. DASC was developed for the data user community and can be found in the Precision and Accuracy Reporting System within the Quality Assurance section of ^{*}Values between \pm 7% and \pm 10% require recalibration but no data are invalidated. EPA's Ambient Monitoring Technology Information System. This data is presented in Appendix C of this report.